EVAL.P3

CAMPO MAGNETICO
Líneas mostrando el campo magnético de un imán de barra, producidas por limaduras de hierro sobre papel.
Un campo magnético es una descripción matemática de la influencia magnética de las corrientes eléctricas y de los materiales magnéticos. El campo magnético en cualquier punto está especificado por dos valores, la dirección y la magnitud; de tal forma que es un campo vectorial. Específicamente, el campo magnético es un vector axial, como lo son los momentos mecánicos y los campos rotacionales. El campo magnético es más comúnmente definido en términos de la fuerza de Lorentz ejercida en cargas eléctricas. Campo magnético puede referirse a dos separados pero muy relacionados símbolos B y H.
Los campos magnéticos son producidos por cualquier carga eléctrica en movimiento y el momento magnético intrínseco de las partículas elementales asociadas con una propiedad cuántica fundamental, su espin. En la relatividad especial, campos eléctricos y magnéticos son dos aspectos interrelacionados de un objeto, llamado el tensor electromagnético. Las fuerzas magnéticas dan información sobre la carga que lleva un material a través del efecto Hall. La interacción de los campos magnéticos en dispositivos eléctricos tales como transformadores es estudiada en la disciplina de circuitos magnéticos.
Fuerza de Lorentz
Artículo principal: Fuerza de Lorentz
Entre las definiciones de campo magnético se encuentra la dada por la fuerza de Lorentz. Esto sería el efecto generado por una corriente eléctrica o un imán, sobre una región del espacio en la que una carga eléctrica puntual de valor (q), que se desplaza a unavelocidad (v) , experimenta los efectos de una fuerza que es perpendicular y proporcional tanto a la velocidad (v) como al campo (B). Así, dicha carga percibirá una fuerza descrita con la siguiente ecuación.


donde F es la fuerza magnética, v es la velocidad y B el campo magnético, también llamado inducción magnética y densidad de flujo magnético. (Nótese que tanto F como v y B son magnitudes vectoriales y el producto vectorial tiene como resultante un vector perpendicular tanto a v como a B). El módulo de la fuerza resultante será:

La existencia de un campo magnético se pone de relieve gracias a la propiedad (la cual la podemos localizar en el espacio) de orientar un magnetómetro (laminilla de acero imantado que puede girar libremente). La aguja de una brújula, que evidencia la existencia del campo magnético terrestre puede ser considerada un magnetómetro.
Historia
Si bien algunos materiales magnéticos han sido conocidos desde la antigüedad, como por ejemplo el poder de atracción que la magnetita ejerce sobre el hierro, no fue sino hasta el siglo XIX cuando la relación entre la electricidad y el magnetismo quedó plasmada, pasando ambos campos de ser diferenciados a formar el cuerpo de lo que se conoce como electromagnetismo.
Antes de 1820, el único magnetismo conocido era el del hierro. Esto cambió con un profesor de ciencias poco conocido de la Universidad de Copenhague Dinamarca Hans Christian Oersted. En 1820 Oersted preparó en su casa una demostración científica a sus amigos y estudiantes. Planeó demostrar el calentamiento de un hilo por una corriente eléctrica y también llevar a cabo demostraciones sobre el magnetismo, para lo cual dispuso de una aguja de brújula montada sobre una peana de madera.
Mientras llevaba a cabo su demostración eléctrica, Oersted notó para su sorpresa que cada vez que se conectaba la corriente eléctrica, se movía la aguja de la brújula. Se calló y finalizó las demostraciones, pero en los meses sucesivos trabajó duro intentando explicarse el nuevo fenómeno.¡Pero no pudo! La aguja no era ni atraída ni repelida por ella. En vez de eso tendía a quedarse en ángulo recto Hoy sabemos que esto es una prueba fehaciente de la relación intrínseca entre el campo magnético y el campo eléctrico plasmada en las ecuaciones de Maxwell
Como ejemplo para ver la naturaleza un poco distinta del campo magnético basta considerar el intento de separar el polo de un imán. Aunque rompamos un imán por la mitad éste "reproduce" sus dos polos. Si ahora volvemos a partir otra vez en dos, nuevamente tendremos cada trozo con dos polos norte y sur diferenciados. En magnetismo no existen los monopolos magnéticos
Nombre
El nombre de campo magnético o intensidad del campo magnético se aplica a dos magnitudes:
  • La excitación magnética o campo H es la primera de ellas, desde el punto de vista histórico, y se representa con H.
  • La inducción magnética o campo B, que en la actualidad se considera el auténtico campo magnético, y se representa con B.
Desde un punto de vista físico, ambos son equivalentes en el vacío, salvo en una constante de proporcionalidad (permeabilidad que depende del sistema de unidades: 1 en el sistema de Gauss, 

 en el SI. Solo se diferencian en medios materiales con el fenómeno de la magnetización
Uso
El campo H se ha considerado tradicionalmente el campo principal o intensidad de campo magnético, ya que se puede relacionar con unas cargasmasas o polos magnéticos por medio de una ley similar a la de Coulomb para la electricidad. Maxwell, por ejemplo, utilizó este enfoque, aunque aclarando que esas cargas eran ficticias. Con ello, no solo se parte de leyes similares en los campos eléctricos y magnéticos (incluyendo la posibilidad de definir un potencial escalar magnético sino que en medios materiales, con la equiparación matemática de H con E, por un lado, y de B con D, por otro, se pueden establecer paralelismos útiles en las condiciones de contorno y las relaciones termodinámicas; las fórmulas correspondientes en el sistema electromagnético de Gauss son:

En electrotecnia no es raro que se conserve este punto de vista porque resulta práctico.
Con la llegada de las teorías del electrón de Lorentz y Poincaré, y de la relatividad de Einstein, quedó claro que estos paralelismos no se corresponden con la realidad física de los fenómenos, por lo que hoy es frecuente, sobre todo en física, que el nombre de campo magnético se aplique a B (por ejemplo, en los textos de Alonso-Finn y de Feynman).1 En la formulación relativista del electromagnetismo, E no se agrupa con H para el tensor de intensidades, sino con B.
En 1944, F. Rasetti preparó un experimento para dilucidar cuál de los dos campos era el fundamental, es decir, aquel que actúa sobre una carga en movimiento, y el resultado fue que el campo magnético real era B y no H.2
Para caracterizar H y B se ha recurrido a varias distinciones. Así, H describe cuan intenso es el campo magnético en la región que afecta, mientras que B es la cantidad de flujo magnético por unidad de área que aparece en esa misma región. Otra distinción que se hace en ocasiones es que H se refiere al campo en función de sus fuentes (las corrientes eléctricas) y B al campo en función de sus efectos (fuerzas sobre las cargas).
Fuentes del campo magnético
Un campo magnético tiene dos fuentes que lo originan. Una de ellas es una corriente eléctrica de conducción, que da lugar a un campo magnético estático, si es constante. Por otro lado una corriente de desplazamiento origina un campo magnético variante en el tiempo, incluso aunque aquella sea estacionaria.
La relación entre el campo magnético y una corriente eléctrica está dada por la ley de Ampère El caso más general, que incluye a la corriente de desplazamiento, lo da la ley de Ampère-Maxwell
Campo magnético producido por una carga puntual
El campo magnético generado por una única carga en movimiento (no por una corriente eléctrica) se calcula a partir de la siguiente expresión:

Donde   . Esta última expresión define un campo vectorial solenoida, para distribuciones de cargas en movimiento la expresión es diferente, pero puede probarse que el campo magnético sigue siendo un campo solenoidal.

Campo magnético producido por una distribución de cargas
  • La inexistencia de cargas magnéticas lleva a que el campo magnético es un campo solenoidal lo que lleva a que localmente puede ser derivado de un potencial vector \mathbf{A}, es decir:

A su vez este potencial vector puede ser relacionado con el vector densidad de corriente mediante la relación:

La ecuación anterior planteada sobre \scriptstyle \R^3, con una distribución de cargas contenida en un conjunto compacto, la solución es expresable en forma de integral. Y el campo magnético de una distribución de carga viene dado por:



https://drive.google.com/file/d/0B-bGZ_SzVirBZ2ttZ0ZlczFxc2M/view?usp=sharing

No hay comentarios:

Publicar un comentario